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S U M M A R Y  
In this paper we derive a straight forward asymptotic method to find the wave solution for the case that a circular 
cylinder is heaving in a free surface. The wave period is supposed to be small. The methods used are similar to methods 
used in the theory of geometrical optics and the theory of boundary layer expansions. It turns out that not only the 
lowest order approximation can be easily calculated, higher order approximations follow as well. 

1. Introduction 

This work concerns a problem which has partly been solved by Ursell [7] in 1953. Ursell con- 
siders a long circular cylinder with its axis horizontal. This cylinder is half-immersed in a fluid 
under gravity and is making periodic vertical oscillations of small constant amplitude about 
this position. Ursell tackled this problem in a straight forward way. He derives an integral 
equation for the potential function on the cylinder. This integral equation is of a rather com- 
plicated form. In order to get some insight in the solution of this equation, it is obvious that, 
because this solution cannot be obtained explicitly, an asymptotic expansion with respect to 
the short wave length is the only way out. Ursell obtains such an asymptotic expansion by 
introducing a Green's function which leads to a small kernel. The choice of this Green's func- 
tion is not as obvious as may be expected. Because the method is very complicated, we may 
pose the question whether there are no other methods to solve this problem. But there are other 
reasons to look for a different method. In his concluding remarks Ursell states that it has not 
yet been shown how the method can be extended to general three-dimensional problems. Up 
to now there is no answer to this important question and we are strengthened in our opinion 
that there is a need for an asymptotic method without these limitations. Such a method will be 
explained in this paper, although we treat a simple two-dimensional problem. It will be clear 
that by using the same reasoning a general three-dimensional problem can be treated. An 
advantage of treating the same problem as Ursell did is that the results can be compared easily. 
We have to do it this way because no general proof of validity will be given for our method. It 
is generally known that there is a need for such a comparison in an asymptotic approach of this 
kind of problems, see Keller [5]. 

As we mentioned before the method we employ in this paper is completely different compared 
with Ursell's approach. We introduce the concept of inner and outer expansion for this problem. 
We do this similar to expansions given by Van Dyke [2] and Cole [1]. However, because of the 
geometric interpretation of inner and outer expansion not being clear at first, we use the ter- 
minology local and regular approximation. This will be clear later on. Ursell [-8] remarks that 
it is not possible to make straight forward expansions of the potential in inverse powers of the 
wave number k, because of the exponential behavior of the wave train exp {k(y+ ix). It is 
obvious that it is possible to make expansions similar to geometrical optics (Keller [5]). 

Hence we will obtain expansions of the form 

A,(x, y) exp {k(y + ix) } 
t~ 

where 

An=o(An_l) for k ~ o o .  
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2. F o r m u l a t i o n  o f  the  P r o b l e m  

We assume the depth of the water to be infinite although the methods can be applied for the 
finite water depth problem. The viscosity is negligible and the wave amplitude is small, i.e. 
the heave amplitude of the cylinder has to be small. It follows immediately that linearized 
equations are applicable to this problem. Attention will be confined to two-dimensional 
problems where a single obstacle intersects the free surface and is forced to heave motions only. 
For simplicity's sake it will be assumed that the obstacle is an infinitely long circular cylinder 
with horizontal generators. The cylinder is forced to perform a prescribed oscillatory vertical 
motion. The amplitude of this heave motion is supposed to be small and the frequency is large. 
Outgoing waves will be produced and the goal of this paper is to determine an approximation 
for these waves (See Fig. 1). 

Let the radius of the circle be denoted by a. The period of the heave motion i.e. of the outgoing 
waves is denoted by 2n/co and we write k=co2/g, N=co2a/g = ka where g is the gravitational 
acceleration and a is of order unity, 

Rg. I 

The irrotational motion of an ideal fluid can be expressed in terms of a velocity potential 
�9 ~) which for two-dimensional time periodic waves has the representation 

4~(,(x, y, t ) = R e  {~(x, y)e-i~ (2.1) 

It is assumed that this potential exists and that the free surface condition may be linearized. 
We notice that this is a linearization with respect to the small amplitude. An other simplifica- 
tion occurs, if we neglect higher harmonics in the potential which are induced by the heave 
motion with frequency co. The higher harmonics are not discussed in this paper. 

The potential 4~ satisfies: 

~32~ ~2~ 
ax- ~ + ~y~- = 0 in the fluid (2.2) 

0r 
- -  - k~b = 0  a t  y = 0, Ixl > a  (2.3) 
@ 

- U sin 0 at r = a and n < 0 < 27r (2.4) 
Qr 

where r, 0 are polar coordinated defined by 

x = r c o s 0 ,  y=r  sin O. 

The radiation condition tells us that the waves are outgoing. 
We will look for an approximation of the potential function if k >> 1. In this case the wave 

contribution is asymptotically non-zero inside a thin layer near the free surface (layer thickness 
is O(1/k) for k~oo).  Therefore if we expand the velocity potential in inverse powers of k, we 
know that this approximation does not give a wave contribution. This can be easily seen be- 
cause the free surface condition reduces to ~b = 0 on the free surface. However it leads to the 
correct vertical fluid velocity near the free surface and the circular cylinder. Hence it serves as a 
regular solution for the wave problem and the waves follow from the local solution which will 
be found for small values of y. 

We will now describe the method which gives us the regular solution. We suppose c.b (x, y, k) 
is a regular asymptotic power series in k-  ~ 
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,1 
e(~, y, k)= 0o(~, y) + ~ 0~(~, y)+ . . . .  (2.5) 

The functions ~ are functions of the coordinates only. We will give the general method for the 
construction of Oi although it is clear that for the circular case solutions can be found by simpler 
techniques. 

The equation for Oi(x, y) becomes: 

8x--T + ~y2 = 0 

8y 

80i 
- 5 p U sin 0 

dr 

in the fluid (2.6) 

aty=O,  lx l>a (2.7) 

at r = a and ~<  0<  2= (2.8) 

1 if i = 0  
where 5 ~ = 0 if i # O  a n d O i - O  i f i < O .  

This problem can be considered as a singular perturbation problem because (2.7) is a lower 
order condition than (2.3). For  this reason a boundary layer may be expected near y =0, where 
we cannot fulfil all conditions. In turns out that we cannot obey the wave condition. Therefore 
we take as a condition at infinity 

lim tPi(x, y ) =  0 .  (2.9) 

To find the solution of (2.6) with conditions (2.7)-(2.9), we construct a Green's function 
G(x, y, ~, q) which is a solution of 

A G = 2 ~ a ( x - { ) a ( y - t l )  - oo < x <  oo, - oo < y < 0  

with G = 0  at y = 0  and G ~ 0  if Ixl+oo or lyl~oo.  
It follows that this Green's function equals 

G(x, y, ~, t/) = �89 In [ ~  + { ' - ~ / ) 2  ] 
L( -4 )  + ( ~ n ) z j  (2.10) 

and the solution of (2.6)-(2.9) can be written as 

21tOi(x, y) = a (p cos e, p sin ~)"~ = ~ p  x 

x G(x, y; a cos cq a sin e) -~ i (a  cos a, a sin e)x 

,>} f (5 sin e) de + 0i(~, 0) OG (x, y; 4, de + 
\ S p  p=~ - o o  .=o 

+ O,(~, 0) (x, y; ~, t/ d~.  (2.11) 
a q=0 

This equation is still an integral equation because in the integral over the circle the function ~,i 
is still unknown. 

However this equation can easily be solved because ((SG/Op) (x, y, p cos e, p sin ~))p=~=0 
for x = a cos 0, y = a sin 0. Hence if we consider a more general shape, we have to take an other 
Green's function with this property on the surface. So in the case of a circular cylinder we get 
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~0da cos 0, asinO)--a(Z~/0~i  c@ d~ \ 0p (p cos e, p sin G(O, e)d~ 
/ p ~ a  

+ f _ j  0i({, 0 ) ~  (0; 3, t/)),= 0 d~+ .I ~~ 0i(~, 0)(~--~ (0;3, t /~ :  ~ d{,  (2.12, 

where we used an obvious notation in the arguments of the Green's function. 
We must pay some special attention to the properties of ~0 (x, y) near the cylinder. From (2.11) 

follows that 

00O a {2=f~ 6"~0o D 0G # 0 2 G ~  "~dc~ (2.13) 
%-y : := { \ V / s : o  05 - O o l 

for x, y on the circle cylinder. 
After some calculations it appears that for x ~ a and y ~  0 

too 
0y 

This can be derived by a conformal mapping which leads to the results much quicker, how- 
ever the method of conformal mapping is more complicated for more general objects. 

The velocity near the circle and the free surface is of order one and subsequent approxima- 
tions can be calculated by (2.1 i). Like we expected no wave contribution can be found because 
the Green's function tends to zero at infinity. 

3. T h e  W a v e  So lu t ion  

In the preceding sections we mentioned that we may consider the boundary value problem 
as a singular perturbation problem, because the order of the free surface condition considered 
in section 2 is lower than the real one. Therefore we must stretch the y-coordinate to fulfil the 
complete free surface condition. On the other hand we like to find a solution for the potential 
equation. Hence we must stretch the x-coordinate as well. 

The first requirement leads to the transformation 

y ' =  ky.  (3.1) 

Because we wish to determine the radiated wave and we want to take care of the boundary 
condition on the cylinder, we stretch the x-coordinate as follows 

x' = k ( x -  a). (3.2) 

This leads to the solution for x > a and because of the symmetry with respect to x = 0 the solu- 
tion for x < - a is known as well. In these new coordinates the equation for the circle becomes 

x ' ~  -2kaY'2 + O ( ~ )  . (3.3) 

The equation and boundary conditions for q,(x', y') become 

02~b 32q~ 
Ox,~ + ~ - ~  = 0 

0 ~  �9 = 0 at Oy' 

8x~' + Oy' ( ka + 0 

_ y,2 
for 2k~- < x' < oo and - oo < y' < 0 (3.4) 

y'= 0 (3.5) 

({_~a)3) } _y,Z 1 -aUy'  x' - (3.6) 
(ka) 2 at 2ka 

(3.7) radiation condition for x '~  oe. 
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From (3.6) follows that for large values of N = ka the local potential function ~z can be written 
as an asymptotic series 

�9 ,(x', y') = e0,(x', y') + y ' )+ . . .  (3.8) 

where ~iz = o(~i-~,l) for N large 
If we insert this in relation (3.6) and equate the lowest order term to zero we see that 

~bol(X', y') = O 1 and ~ is of the same order. 

However from the calculations in Section 2 it follows that the water particles have a velocity 
+ U with respect to the fixed cylinder near the surface and the cylinder and because the 
stretching of the coordinates is a stretching with respect to the fixed circle cylinder, we have to 
deal with this relative velocity in (3.6). We know that 

0~o aU 
gy' N '  

therefore ~k 0 is the lowest order approximation in the whole fluid domain and must be added to 
(3.8), see O'Malley [3]. This leads to a contribution in the lowest order approximation of the 
wave potential. Hence condition (3.6) becomes up to the lowest order. 

O~ol - 2aU 
Ox' N 2 -  y' at x' = 0 (3.9) 

We now proceed with the determination of ~o~, which is a solution of 

~2 ~ol ~2 4~oi 
- -  + ~ = 0 for x ' > 0 ,  y ' < 0  (3.10) ~X t2 

Oy' 

~ol  -2aU 
Ox' N T-- y' 

- - -  ~ o l = 0  for y ' = 0  (3.11) 

for x' = 0  and y' finite (3.12) 

It is worthwhile to pay more attention to condition (3.12). This condition does not meet the 
requirement that the velocity tends to zero i f y ~  - ~ .  However for large values ofy the solution 
of section 2 holds. Therefore (3.12) can only be used for the determination of the wave contri- 
bution which holds near the free surface. To find the wave solution of (3.10)-(3.12) we construct 
a Green's function which satisfies 

gx'~, + g,,,, = (5(x ' -~) f (Y ' -r l )  (3,13) 

g r , - g = 0  at y ' = 0  (3.14) 

g x ' = 0  a t  x ' = 0  (3.15) 

radiation condition. (3,16) 

First we disregard condition (3.15). This condition will be met by reflexion. We consider 
g~ y', ~, tl) which is a solution of (3.13)., (3.14) and (3.16). This solution gO (x,' y,' ~, ~/) is well 
known--see:  John [4J--and may be written in the form: 

1 [ 
g~ y', r n)= - ie'lX'-r + Un In L(x ' -  ~)2 + (y' + r t ) 2 / +  (3.17) 

1 f ~  t cos (y '+tt) t+sin(y '+tt) t  e_rx,_r t 
n o l + t  2 
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It can easily be shown that for large values of x' or 3, 90 behaves like 

1 I g~ ', Y', 4, rl) "~ -ieil~'-~l+tY'+'7) +O ~ . 

From this function gO we can find g as follows 

g(x', y', ~, q) = g~ y', 4, ~l) + g~ - x', y', ~., rl) . (3.18) 

As we see (3.18) satisfies condition (3.15) and the solution is of the form 

- 4 a U  (o 
q?o~- N 2 ) _ ~  ~lg~ x', Y', O, ~l)dq (3.19) 

because g ~  y', r ~l) = g~ Y', - 3 ,  ~). 
It is obvious that only for the wave part of ~oz the integration of ~7 from - oo to 0 has a 

meaning. In other words the finite part of the integral has to be taken into account (see Keller 
[5]). 

This leads to a wave part 

4aUi (o 

a - o ~  

- 4 a U i  
- N ~  e i~'+y' . (3.20) 

For large values of x' the wave contribution (3.20) remains unaltered. Therefore, in the original 
coordinates we get 

- 4a Ui 
~(x, y) ~ N2 eik(x-a)+ky for x>>0. (3.21) 

Because of the symmetry of the problem we get 

- 4 a U i  eik(l~l_a)+ky for large values of [xl. (3.22) �9 (x, y) "-- N2 

The surface amplitude at infinity is 

icon(x, O) 4o~aU 
g gj~2 

while the amplitude of motion of the cylinder equals U~o- 1, and thus their ratio : 

wave amplitude at infinity 4e)2a 4 
wave making coefficient = Wc = amplitude of motion of the cylinder gN 2 N 

This result agrees with the result derived by Ursell [7] and Rhodes-Robinson [-6]. 
The paper of Rhodes-Robinson is an extension of [7] for the case of finite depth. In our 

theory this extension can be easily made by considering the depth of the water in the determina- 
tion of the regular solution. We will not do so in the present paper, because it is more important 
to construct a higher order wave approximation as is clearly indicated in fig. 1 of [6]. 

4. Higher  Order Approximat ion  

In principle the theory of Ursell leads to higher order approximations. However, the derivation 
is even more lengthy than the derivation of (3.22) and neither carried out in [7] nor in [6]. With 
our method it is rather simple to make this extension. As follows from the preceding sections 
it is sufficient to find an approximation of O~/Ox' in the vicinity of the cylinder. 

After a thorough investigation of condition (3.6) it turns out that for the next order only 
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OOl/~y' is needed. Higher order approximations need other derivatives of 0o also, since (3.6) 
is given on x ' =  -y '2/2ka,  and a complicated matching principle has to be used. 

As we will see the asymptotic series we find is not a power series in N -  a. It is a well-known 
fact that logarithmic terms play an important role. The regular solution remains a series in 
powers of k-  1. In the preceding sections we suggested that ~o (x, y) can be calculated by means 
of conformal mapping. If we do so, we find 

Ua2 Y (4.1) 
~ 0 (  X,  Y)  - -  X2_l._ y 2 " 

In order to calculate ~a (x, y) near the circle and the free surface, we use (2.12) together with 
(2.7). This yields 

~z (~1 (a cos 0, a sin 0))0~2. -~ - 2 y a  2 U • 

f~ 1 { 1 1 } d ~ = _ 2 y U { 2 1 n l 2 ~ +  5 re/2} 
X a ~ (a_r [_y 2 -k (a+r a 2aa + - -y  (4.2) 

The derivative of ~ ~ with respect to y follows from (4.2) or by direct calculation. 
We find 

&Pt~y x ~ . , r ~ , ~ - U { 4 1 n L Y ~ I - 4 1 n 2 + 9 }  " a  a (4.3) 

For the wave contribution we must solve the problem 

02~11 02~11 
- - +  Oy,2 - 0  for x ' > 0 ,  y ' < 0  (4.4) ~X ~2 

~y' 

~ b l t  

- -  - ~lt  = 0 for y' = 0 (4.5) 

y t 

Ox ~ =  + ~ U a { 4 !  n L y ' L - 4 1 n 2 + 9 - 4 1 n k a }  for x ' = 0 .  (4.6) 

From condition (4.6) it follows that the second order wave approximation not only consists of a 
multiple of N -3 but of N -3 In N as well. With the help of the Green's function (3.18) we find a 
wave contribution of the form 

r  ~1z+~1 , 

where we split up Cat into a N -3 In N term and a N -3 term 

and 

�9 , I n N  
~1l = - 8aUi e '~'~-r _ _  (4.7) 

N 3 

eiX , + y' 

~1 = {26-8 ( ln  2+v)}aUi N3 (4.8) 

where 7 = 0.577 is Euler's constant. 
The second order approximation of the wave making coefficient becomes 

4 (8 an N -  15.6) 
Wc-~ ~ + N2 (4.9) 

It is regrettable that no comparison with test results can be made because in the range of 
short waves no oscillation tests can be carried out. Vugts [9] shows that test results are reliable 
up to N = 1. For  frequencies with N between 1 and 2.25 an increase in the spread of results can 
be noticed. 

The calculations carried out by Vugts are not valid in the short wave region. 
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5. Conclusion 

The main result of this paper is that with a straight forward application of a perturbation 
technique results can be obtained for the radiation of short waves from an oscillating cylinder. 
Although the method is applied to a rather simple problem, we can make an extension to 
cylinders of general shape and water of finite depth. The calculations of Section 2 are a little 
more complicated, however, no principle difficulties occur. The only restriction we come across 
is the tangent to the obstacle near the free surface being perpendicular to the undisturbed free 
surface. We are not restricted to a parabolic approximation of the object in the stretched 
coordinates. 
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